Trait based approaches to understanding and maximizing ecosystem resilience

Marko J. Spasojevic University of California - Riverside

Can we manage our systems for resilience?

• Engineering Resilience

the ability of a system to recover state/function following disturbance

Holling, 1996

Can we manage our systems for resilience?

Why do some ecosystems have irreversible responses to environmental change while others recover relatively quickly?

Photo credit: greenliving.com

Alpine tundra

- Impacted by:
 - Longer growing season
 - Mid-summer drought
 - Nitrogen deposition
- Evidence for resilience

esa

ECOSPHERE

Changes in alpine vegetation over 21 years: Are patterns across a heterogeneous landscape consistent with predictions?

Marko J. Spasojevic,¹ William D. Bowman,^{2,3,4} Hope C. Humphries,⁴ Timothy R. Seastedt,^{2,4} and Katharine N. Suding^{5,}†

Southern California Coastal Sage Scrub

- Impacted by:
 - Climate change
 - Nitrogen deposition
 - Fire
 - Exotic species

Loma Ridge, Orange County, California

• Limited resilience

Journal of Applied Ecology 1999, **36**, 544–554 Lack of native species recovery following severe exotic disturbance in southern Californian shrublands

CATHLYN D. STYLINSKI* and EDITH B. ALLEN†

*Department of Biology, San Diego State University, San Diego, CA 92182–4614, Botany and Plant Science, University of California, Riverside, CA 92521, USA

Altered water and nitrogen input shifts succession in a southern California coastal sage community

Sarah Kimbali, 1,5 Michael L. Goulden, 2 Katharine N. Suding, 3,4 and Scot Parker 2

¹BIO SCI-Center for Environmental Biology, University of California, Irvine, California 92697-1450 USA ²Department of Earth System Science, University of California, Irvine, California 92697-3100 USA ³Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697 USA ⁴Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall 3114, Berkeley, California 94720-3114 USA

How can we maximize resilience in our system?

Functional traits

Resilience

How can we maximize resilience in our system?

- In theory:
 - the function of any given species lost to a disturbance can be replaced by other functionally redundant species in high diversity ecosystem

(Holling, 1973, Walker, 1995, Elmqvist et al., 2003, Suding, 2011)

- In theory:
 - More diversity = more resilience

How can we maximize resilience in our system?

- In theory:
 - the function of any given species lost to a disturbance can be replaced by other <u>functionally</u> <u>redundant</u> species in <u>high diversity ecosystem</u>

(Holling, 1973, Walker, 1995, Elmqvist et al., 2003, Suding, 2011)

- In theory:
 - More diversity = more resilience
 - More functional diversity and more functional redundancy?

Functional trait-based approaches in ecology

Functional traits – organismal characteristics linked to fitness that mediate responses to, and effects on, the environment

Advantages of trait-based approaches

• Easily generalize across systems and species

- Short
- Perennial
- Forb
- Low Specific Leaf Area
- Rhizomatous
- Low C:N
- High concentrations of secondary chemicals
- Slow relative growth rate

Advantages of trait-based approaches

- Easily generalize across systems and species
- Provides insights when experimental approaches are more challenging

Around 200 years old

Advantages of trait-based approaches

- Easily generalize across systems and species
- Provides insights when experimental approaches are more challenging
- Mediate responses to, and effects on, the environment

Can trait based approaches be used to understanding and maximizing ecosystem resilience?

the function of any given species lost to a disturbance can be replaced by other <u>functionally</u> <u>redundant</u> species in <u>high diversity ecosystem</u>

(Holling, 1973, Walker, 1995, Elmqvist et al., 2003, Suding, 2011)

Functional richness = the range of functional strategies in a community

High functional diversity

Low functional redundancy

 Functional dispersion = the diversity of strategies in a community

High functional diversity

High functional redundancy

- Do we need a wider range of strategies, species with a diversity of strategies, or both?
- Given limited resources, which do we maximize?

What factors influence the resilience of productivity to wildfires?

Mao-Ning Tuanmu, Seeta Sistla, Ruscena Wiederholt and Katharine N. Suding

Biodiversity – resilience relationship

- In theory:
 - the function of any given species lost to a disturbance can be replaced by other functionally redundant species in high diversity ecosystem

(Holling, 1973, Walker, 1995, Elmqvist et al., 2003, Suding, 2011)

- In practice:
 - Evidence is generally limited in scope and localized scale
 - To date, no studies have tested this relationship at large spatial scales

Scaling up the biodiversity-resilience relationship to large scales

Disturbance = fire

USGS Landfire - Identify high severity fires

Resilience = recovery of productivity

- Time Integrated NDVI slope over 10 years
 - Control pixel

Biodiversity

- Species richness
- Seed mass (KEW)
- Fire traits (USDA PLANTS)
 - Fire tolerance
 - Fire resistance
 - Resprout-ability

133 Wildfires across the Four-Corners

Global Change Biology

Are more (functionally) diverse ecosystems more resilient?

Species richness weakly influences resilience

Seed Mass does not influence resilience

Increased resilience in ecosystems with greater dissimilarity in fire traits

Implications

- A few strategies with a diversity of species may be more important than a wide range of strategies and fewer species
- Still need on the ground tests at landscape scales

Future work and collaborations

- Trait based approaches can help inform restoration and resilience of chaparral to fire
 - Need to link on the ground surveys and trait measurements with remote sensing
 - Need to examine multiple functions

Smithsonian Tropical Research Institute Center for Tropical Forest Science

Questions

Contact: (email) markos@ucr.edu (twitter) @M_J_Spasojevic

- Acknowledgements
 - Ecological Society of America
 - Loralee Larios