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RESEARCH ART ICLE

Biotic and abiotic treatments as a bet-hedging approach
to restoring plant communities and soil functions
Audrey J.Q1

Q2

Q3

Rader1, Lindsay P. Chiquoine1 , James F. Weigand3, Judy L. Perkins3, Seth M. Munson4,
Scott R. Abella1,2

Two related concepts in restoration ecology include the relative interchangeability of biotic and abiotic restoration treatments
for initiating recovery and bet hedging usingmultiple restoration approaches to increase the likelihood of favorable restoration
outcomes. We used these concepts as a framework to implement a factorial experiment including biotic (outplanting
greenhouse-grown individuals of three perennial species) and abiotic treatments (constructing microtopography or vertical
mulch consisting of upright, dead plant material). These treatments were designed to stimulate native plant recruitment and
reverse soil degradation at four disturbed sites in the Sonoran Desert, U.S.A. The first growing season after the restoration
treatments was the driest of the last 47 years, and 100% of outplants died. While the biotic treatment failed, the vertical mulch
abiotic treatment increased native shrub seedling cover at the driest site and reversed soil loss across sites by increasing soil
accumulation by 6� to 2 cm/year. Results revealed that (1) inexpensive, minimal-input abiotic treatments outperformed
resource-intensive biotic treatments; (2) the restoration effort withstood the total failure of a major component (outplanting)
to nevertheless achieve key restoration benefits within 2–3 growing seasons; and (3) incorporating multiple treatment types
served as a bet-hedging approach to buffer against treatment failures. Integrating minimal-input abiotic treatments in restora-
tion warrants consideration given their low cost and bet-hedging potential.

Key words: desert, drought, erosion, mounding, outplanting, partial restoration success, vertical mulch

Implications for Practice

• Outplanting has restored native perennials in a variety of
drylands globally, but during droughts when potentially
infeasible levels of plant care may be required, practi-
tioners could consider using abiotic treatments as substi-
tutes for live plants to restore ecological functions.

• Vertical mulch using dead plant material is promising for
inexpensively initiating recovery in drylands including
during droughts when seeding or outplanting is difficult.

• Implementing multiple treatment types, including inex-
pensive, minimal-input treatments, can be a bet-hedging
strategy against treatment failures, enabling restoration
projects to produce at least partially favorable outcomes
despite failure of some treatments.

Introduction

Two concepts related to the success of ecological restoration
include the relative interchangeability of biotic and abiotic resto-
ration treatments for recovering ecological functions and bet
hedging using multiple restoration approaches to increase
chances of meeting restoration goals. Given challenges with
directly reintroducing propagules or live plants and their uncer-
tain survival, a key question is the degree to which abiotic struc-
tural restoration can stimulate native species recovery and at
least partly provide the ecosystem functions of live organisms

(Chiquoine et al. 2016; El-Keblawy et al. 2016; Li et al. 2017).
For example, abiotic structures could substitute for live plants
in slowing soil erosion, avoiding the uncertainty of needing
timely establishment of live plants (Fick et al. 2016). This uncer-
tainty in biotic and abiotic restoration input needs and variable
effectiveness of restoration treatments in dynamic environments
has further led to exploring bet-hedging approaches to restora-
tion (e.g. Davies et al. 2018). Bet-hedging could take several
forms, such as replicating treatments across years, using multi-
ple species in planting mixtures, or applying both biotic and abi-
otic treatments (Doherty & Zedler 2015). As an example,
Commander et al. (2013) found that reintroducing propagules
of species at some semiarid Australian restoration sites failed
entirely, but that a restoration goal of de-compacting soils to
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foster plant recruitment was nevertheless achieved through abi-
otic treatments.

Desert ecosystems, with their combination of climatic
extremes, spatial concentration of biotic and abiotic resources
into discrete patches within sites, and restoration difficulty, pro-
vide a model system for exploring concepts of biotic and abiotic
treatments and bet-hedging approaches to restoration. Many
undisturbed desert habitats contain widely spaced perennial
plants separated by open interspaces between perennials, a spa-
tial configuration concentrating resources in fertile islands
below and immediately surrounding perennials (Brown &
Porembski 1997). Compared to interspaces, surface soils in fer-
tile islands are frequently nutrient-enriched, mounded and of
finer texture via accumulating soil particles, and cooler and
moister from shade cast by perennial plants and retention of soil
organic matter (El-Bana et al. 2003). These fertile island micro-
sites, often only 0.25–1 m2 and comprising small total areas of
sites, are biological hotspots of plant recruitment (Carrillo-
Garcia et al. 1999). Because of the low availability of resources
in deserts, the concentration of resources into fertile islands to
reach levels required for biological activity is frequently consid-
ered fundamental to the healthy functioning of mature desert
ecosystems (Hulvey et al. 2017). Severe anthropogenic distur-
bance typically homogenizes sites, disrupting fertile island
structure, and necessitating its restoration as part of desert habi-
tat recovery (Fuentes-Ramirez et al. 2015). As a result, biotic
treatments to reestablish native perennials are commonly initial
restoration steps. While seeding may succeed in certain circum-
stances, bypassing the uncertainty of germination and early
seedling survival in extreme desert environments by outplanting
greenhouse-grown seedlings has oftenmore reliably restored desert
perennials (Rathore et al. 2015; Rowe et al. 2020; Strohmeier
et al. 2021). However, even outplanting with supplemental treat-
ments (e.g. irrigation) has not always succeeded in deserts, particu-
larly if performing intensive follow-up plant care is infeasible
(Woods et al. 2012). This raises a question as to whether abiotic
treatments could achieve commonly desired restoration benefits,
such as slowing soil erosion and creating conditions for native
plant recruitment.

Here, we conducted a restoration experiment in a desert
ecosystem using the concepts of potential functional inter-
changeability of biotic and abiotic restoration treatments for
triggering restoration benefits and bet hedging using multiple
species and treatment types. Based on this conceptual frame-
work to include both biotic and abiotic treatments for bet hedg-
ing, we implemented a resource-intensive biotic treatment
(outplanting) and two types of less-resource-intensive abiotic
treatments (constructing microtopography or vertical mulch-
ing using upright dead plant material) at four disturbed sites
spanning a gradient of surface soil conditions and compared
treatment effectiveness. We assessed a range of functional res-
toration response metrics including 10 univariate plant com-
munity variables (e.g. shrub seedling cover), multivariate
plant community composition, and four soil functional vari-
ables (e.g. soil accumulation). We evaluated a null hypothesis
that restoration treatment approaches equally affected response
variables.

Methods

Reference Conditions and Experimental Sites

We performed the experiment in the Lower Colorado River Valley
subdivision, the largest and most arid subdivision of the Sonoran
Desert andwhich is in California andArizona, U.S.A., and northern
Mexico (Turner & Brown 1982). Our study area occupies the
northwestern part of the subdivision between the cities of Indio
and Blythe, southeastern California. The study area encompassed
four experimental sites along the Devers-Palo Verde No. 2 trans-
mission line, a powerline corridor administered by the Southern
California Edison Company and constructed between the mid-
1980s and early 2010s. The sites, which are on public land overseen
by the Bureau of LandManagement, spanned a west–east extent of
62 km and averaged 23 km apart. Soils were generally derived
from granite and gneiss alluvium parent material. Reflecting their
arrangement along with a soil textural gradient, we named sites
according to their surficial texture ranging from gravelly fine sand
to loose, eolian sand (Table S1). As part of construction and main-
tenance activities for the powerline, the sites were disturbed before
or during 2013 including removal of vegetation and alteration of
surface soil (to a depth of 10–50 cm) by leveling the soil surface
from heavy equipment and vehicular traffic. Site conditions in
2016, before restoration commenced, included minimal to no plant
cover (<1%); visually altered, homogenous ground surfaces; and
generally nutrient-poor 0–5 cm mineral soils compared to nearby,
undisturbed, reference sites (Fig. S1; Tables S1 & S2). Reference
sites contained mature desert shrubland dominated by the native
shrubs creosote bush (Larrea tridentata) and bursage (Ambrosia
dumosa), along with big galleta grass (Pleuraphis rigida). During
years of favorable precipitation, sites also contained a mixed-
species annual community with natives such as desert plantain
(Plantago ovata) and Coulter’s lupine (Lupinus sparsiflorus). Ref-
erence native perennial cover ranged from 2 to 5% and annual plant
cover in wetter years also ranged from 2 to 5%. As exemplified by
the reference sites, generalized target communities for restoration
on the disturbed sites were desert shrubland (including perennial
grasses where appropriate) and a mixed-species annual community
dominated by native species.

Climate, measured in Blythe, California, at an elevation of
120 m on the eastern boundary of the study area, averages
88 mm/year of precipitation and daily temperatures of 4/20�C
(low/high) in January and 26/43�C in July (1949 through 2019
records; National Centers for Environmental Information,
Asheville, North Carolina). About half (48 mm) of the annual
precipitation falls from November through March. This period
represents the winter–spring growing season for winter annuals
and spring growth of perennials. During our experiment, the first
growing season (November 2017 through March 2018) was the
driest in the last 47 years and the fifth driest in the 72-year record
(Fig. S2). The 2019 growing season was 13% below average. The
2020 growing season was moist (231% of average precipitation).

Experimental Design and Treatments

We used a randomized block, two-factor, factorial design con-
sisting of sites (n = 4) as blocks, two levels of biotic treatment

Restoration Ecology2 of 8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Biotic and abiotic bet hedging



(none, outplanting), and three levels of abiotic treatment (non-
manipulated control, microtopography, vertical mulch; Fig.F1 1).
At each of the four disturbed sites, we established a
20 m � 14 m (280 m2) plot. In each plot, 24 quadrats (each
0.5 m � 0.5 m, 0.25 m2) were randomly located at least 2 m
from each other. We then assigned one of the six treatment com-
binations to each quadrat (with four quadrats per treatment
combination) as a randomized complete block.

We installed treatments in December 2017. The microtopo-
graphy treatment consisted of contouring the soil surface into a
cylindrical ring with an outer diameter of 0.5 m, an outer height
10 cm higher than the surrounding surface soil, an elevated ring
width of 10 cm, and a basin in the center (Fig. 1). Building each
vertical mulch structure entailed digging a circular trench (10 cm
wide and 10 cm deep) with an outer diameter of 0.5 m, gathering
0.013 m3 of senesced shoots of big galleta grass from nearby
washes, placing the shoots vertically to fill the trench, and press-
ing adjacent soil into and against the trench to hold the shoots
upright. The result was a ring-pattern arrangement of vertical
mulch, with the ring 30 cm tall and 10 cm wide, encircling an
open interior (Fig. 1). Vertical mulch structures remained intact
and no maintenance was required for the duration of the
experiment.

To prepare the outplanting treatment, we collected seeds of
three native perennials (big galleta grass and the shrubs bursage
and sweetbush [Bebbia juncea]) from nearby undisturbed areas
in spring 2017. Seeds were germinated and seedlings were
grown for 9 months in 30-mL (12.7 cm tall � 3 cm top diame-
ter) plastic cones filled with an 80:20 sand:organic mixture in
an indoor nursery (Center for Urban Water Conservation, Uni-
versity of Nevada, Las Vegas). Soil in cones was watered twice

daily to field capacity during the first 8 months of the propaga-
tion period, then tapered to once daily in the ninth month, when
seedlings were moved outdoors under a shade cloth (50%
shade). The nine-month propagation period produced seedlings
10–20 cm tall for outplanting. In December 2017 after abiotic
treatments were implemented at the restoration sites, we planted
one seedling of each of the three species within abiotic treatment
quadrats by placing seedlings 10 cm apart in a triangular pattern
in the interiors of abiotic structures. Planting holes (dug by hand,
15 cm deep) were filled with water and allowed to drain before
seedlings were inserted. Seedlings were then provided with
1 L of water applied to the soil surface followed by another
1 L 2 months later in February 2018.

Data Collection

We assessed outplant survival 1, 3, 6, and 28 months after plant-
ing. We measured plant communities in each quadrat (0.25 m2)
in each plot by recording the aerial cover using cover classes
(Peet et al. 1998) by species (Natural Resources Conservation
Service 2021) for vascular plants rooted in quadrats. To allow
for an initial growing season of germination and plant establish-
ment following disturbance from implementing treatments, we
performed plant community measurements 16 (March 2019)
and 28 months (March 2020) after treatment installation. Six-
teen months after treatments, we assessed four soil functional
variables along perimeters of each quadrat. The soil responses
were measured or sampled in the four cardinal directions and
averaged on a quadrat basis. Soil compaction (0–5 cm depth)
was measured with a penetrometer (AMS G 281 E-280; Ameri-
can Falls, Idaho, U.S.A.). Soil aggregate stability was measured

Figure 1. Design of an ecological restoration experiment on sites disturbed by construction activities along an energy transmission corridor in the SonoranDesert,
California, U.S.A. Half the quadrats of each abiotic treatment received outplanting, consisting of one seedling of each of three species spaced in a triangular
pattern within the abiotic treatment (outplants not shown in the photo). Vertical mulch consisted of dead stalks of the native perennial grass Pleuraphis rigida
placed upright into the ground to form a doughnut pattern. The photo was taken in December 2017when treatments were implemented and before three additional
soil erosion pins were inserted around abiotic treatments to measure soil accumulation.
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following Herrick et al. (2006). To assess soil moisture, samples
5-cm deep and 10 cm in diameter were sealed in glass jars and
analyzed gravimetrically via oven drying at 105�C for 24 hours.
Soil accumulation or loss, quantified as the change in soil depth,
was measured by anchoring four 25-cm long soil erosion pins
(Hancock & Lowry 2015) 10 cm deep into the soil around each
quadrat.

Data Analysis

We analyzed univariate plant community response variables
using a generalized linear mixed model including sites as
blocks, biotic treatment (two levels: none or outplanting), abi-
otic treatment (three levels: non-manipulated control, microto-
pography, or vertical mulch), and year as a repeated measure
(spring 2019 and 2020). We analyzed 10 univariate plant com-
munity variables, ranging from total native plant cover to non-
native annual grass species richness (per 0.25 m2; Table S3).
Soil functional variables were analyzed using the same model
but without year. Models were implemented in SAS 9.4 using

PROC GLIMMIX, with appropriate data distributions assigned
(lognormal for cover and continuous soil variables; Poisson or
negative binomial for species richness and soil stability). For
models with effects significant at p < 0.05, means were sepa-
rated using Tukey tests. In the paper, we focus on interactions
or main effects involving treatments and report variation involv-
ing only site, year, or significant overall interactions but without
significant Tukey separations in Tables S3 and S4.

To analyze species composition among abiotic treatments,
we applied permutational multivariate analysis of variance
(Anderson 2001) to a matrix of relative cover (cover of spe-
ciesi/

P
cover of all species, where cover for each species was

averaged across years) as a randomized block design including
sites as blocks and abiotic treatment. We used Sørensen distance
and default settings for the analysis in PC-ORD 7.07
(McCune & Mefford 1999). To examine the fidelity of individ-
ual species to abiotic treatments, we used blocked indicator spe-
cies analysis, with sites as blocks, applied to a matrix of relative

Figure 2. Cover of non-native plants in outplanting and abiotic treatments in
an ecological restoration experiment in the Sonoran Desert, California,
U.S.A. For (A) total non-native plant cover, outplanting interacted with sites,
named according to their surface soil properties. For (B) non-native annual
grass cover, no interactions occurred with abiotic treatment (non-
manipulated control or addition of microtopography or vertical mulch), so it
is shown as a main effect. Bars are means and error bars are �1 SE. Means
without shared letters differ at p < 0.05 (Tukey tests). All non-natives were
annuals (Table S5).

Figure 3. Variation in native plant species variables that displayed
interactions between abiotic treatment (non-manipulated control or addition
of microtopography or vertical mulch) and site (named according to their
surface soil properties) in an ecological restoration experiment in the
Sonoran Desert, California, U.S.A. Bars are means and error bars are �1
SE. Means without shared letters differ at p < 0.05 (Tukey tests).
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cover (Dufrêne & Legendre 1997). We dropped the biotic treat-
ment to simplify multivariate analyses as all outplants died.

Results

None of the 144 outplants (48 each of big galleta grass, bursage,
and sweetbush) had live aboveground foliage by 3 months after
planting at the four sites, and the 100% mortality was confirmed
through 28 months after planting. The activity of outplanting
in our experiment did not significantly affect soil functions or
univariate plant community variables, with one exception
(Table S3). The exception was non-native annual plant cover
via a site � outplanting interaction, where the cover was higher
in quadrats receiving outplanting compared with no outplanting
at the moderately gravelly site (Fig.F2 2A).

The abiotic treatment affected several univariate plant com-
munity variables for at least 28 months after treatment
(Table S3). For example, at the eolian sand site, constructing
vertical mulch increased shrub seedling cover and species rich-
ness above levels in quadrats receiving microtopography or no
treatment (Fig.F3 3A & 3B). Constructing microtopography
resulted in non-native annual grass cover (all Schismus spp.)
significantly higher than in the control (Fig. 2B).

In contrast to their influence on univariate plant community
variables, abiotic treatments did not affect species composition
based on permutational multivariate analysis of variance
(Table S4). Blocked indicator species analysis reinforced this
finding, as none of the 29 taxa (3 non-native, 26 native) recorded
among the sites were associated with a particular abiotic treat-
ment (Table S5). Non-natives with the most cover included
Sahara mustard (Brassica tournefortii) and Schismus spp. Chee-
sebush (Hymenoclea salsola) and bursage had the most cover
among four native perennial species. Native annuals were the
most diverse with 22 taxa, dominated by desert plantain, cryp-
tantha (Cryptantha spp.), coastal bird’s-foot trefoil (Lotus salsu-
ginosus), and chuckwalla combseed (Pectocarya heterocarpa).

Among soil functional variables, three of them (moisture, sta-
bility, and compaction) varied only with site, while the fourth
(soil accumulation) varied with abiotic treatment (Table S6).

The control incurred a net loss of soil over 16 months (Fig.
F4

4).
Meanwhile, quadrats receiving vertical mulch accumulated over
2 cm of soil, significantly more than in quadrats receiving micro-
topography or in the control.

Discussion

Results revealed three main findings: (1) an abiotic treatment
(vertical mulch) outperformed the biotic treatment (outplant-
ing); (2) a major component (outplanting) of the set of restora-
tion treatments failed entirely, but key functional outcomes
(initiating soil accumulation and conditions for shrub recruit-
ment) were nevertheless achieved by treatments that were effec-
tive; and (3) a bet-hedging approach including multiple species
in propagule reintroduction mixtures was unsuccessful, but a
broader bet-hedging approach of employing both biotic and abi-
otic treatments did produce restoration benefits. In turn, three
conclusions from these findings can be drawn for practical appli-
cation in ecological restoration: (1) minimal-input treatments
can outperform intensive treatments in some cases, such as using
minimal-input vertical mulch in our experiment to initiate struc-
tural and process restoration as resource-intensive use of
greenhouse-grown outplants was ineffective; (2) applying a
diverse suite of treatments as a bet-hedging strategy in dynamic
restoration environments can help buffer restoration projects
from uncertainty and potential failure; and (3) incorporating
some minimal-input treatments in restoration warrants consider-
ation given their low cost and potential for bet hedging against
the possibility that more expensive treatments fail.

Functional Benefits

While not all restoration response variables changed favorably,
three key variables (soil accumulation and native shrub cover
and richness) did achieve desired increases at all or some sites.
Soil erosion and the resulting fugitive dust is problematic in dis-
turbed desert habitats (Munson et al. 2011). In theMojave Desert,
for example, fugitive dust has triggered safety hazards for vehicle
or airplane travel and exposed humans and wildlife to particulate
matter (Grantz et al. 1998). Mobile soils can also disrupt plant
regeneration processes, creating a positive feedbackwhereby lack
of vegetative cover perpetuates soil degradation (Fick et al. 2016).
Vertical mulch was the most effective treatment for promoting
soil accumulation. While landscape-scale evaluations of atmo-
spheric dust were beyond the scope of our experiment, previous
research suggests that even sparsely distributed structures (akin
to distributed vertical mulch) can increase surface roughness,
slow winds, and reduce soil erosion cumulatively across land-
scapes (Grantz et al. 1998; Munson et al. 2011; Fick
et al. 2016). This is noteworthy for our study area as wind speeds
average 12 km/hour annually, and for the last 20 years, at least
1 day of every month has experienced peak winds exceeding
48 km/hour (Blythe station, National Centers for Environmental
Information, Asheville, North Carolina).

The trend for increased abundance of native shrub seedlings
in the vertical mulch and microtopography treatments at some
sites suggests that at least conditions enabling recruitment

Figure 4. Cumulative change in soil depth (16 months) among abiotic
treatments during ecological restoration in the Sonoran Desert, California,
U.S.A. Bars are means and error bars are one standard error of means.Means
without shared letters differ at p < 0.05 (Tukey tests).
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opportunities were reinstated. In natural, undisturbed desert eco-
systems, pulses of native perennial seedlings can appear rela-
tively frequently among years, but survival of the seedlings
across multiple years rarely occurs (Abella et al. 2019). Bowers
et al. (2004), for example, found that on average, only 0.1% of
native perennial seedlings lived as long as 4 years in the Sono-
ran Desert. These observations suggest that while multi-decade,
long-term data would likely be required to determine whether
restoration treatments facilitated long-term shrub establishment,
a first step of fostering the process of seedling appearance was
achieved. Given the long life spans of native desert shrubs, even
a single successful recruitment event from restoration actions
could initiate revegetation benefits lasting decades. The two
native shrub species most abundant in the vertical mulch treat-
ment, bursage and cheesebush, are considered to have moder-
ately long-lived individuals (30–50+ years) capable of being
initial colonizers of severe disturbance, then persisting in matur-
ing shrublands (e.g. Bowers et al. 2004).

Failure of the Biotic Treatment

The total failure of outplanting was unusual, as some outplant sur-
vival occurred in dozens of previous restoration experiments in
NorthAmerican (e.g. Edwards et al. 2000; Glenn et al. 2001; Devitt
et al. 2020) and global drylands (e.g. Commander et al. 2013;
Rathore et al. 2015; Strohmeier et al. 2021). A likely factor was that
the growing season (November 2017–March 2018) in which out-
planting occurred in our experiment was the driest of the last
47 years. Thus, this was apparently proportionally the driest period
in which any published outplanting experiment occurred in the
Sonoran or Mojave Desert dating back to the earliest outplanting
research in the 1970s (Abella & Berry 2016). Although we pro-
vided outplants with initial watering and a third were enclosed in
protective vertical mulch, the possibility that intensive treatments
(e.g. regular irrigation) could have kept outplants alive even under
the extreme drought conditions cannot be ruled out. However,
attempting to implement that level of treatment intensity for just
the possibility of outplant survival does raise operational feasibility
questions. Establishing relatively permanent irrigation infrastruc-
ture (sensu Bean et al. 2004) was not feasible in the site context
of our experiment along the energy transmission corridor. In lieu
of intensive treatments, these observations suggest that outplantings
phased across multiple years may be another bet-hedging strategy
(Davies et al. 2018).While adding to complexity of restoration, per-
forming the same treatments across multiple years may be particu-
larly suited for restoration in deserts given not only their low
average rainfall, but also their extreme variability in rainfall among
years (Commander et al. 2013). Moreover, abiotic treatments for
bet hedging may become increasingly useful if conditions suitable
for directly restoring biota become less frequent, as climate warm-
ing and drying trends suggest in southwestern deserts (Ehleringer&
Sandquist 2018).

Effects of Treatments on Non-Native Plants

Restoration inadvertently facilitating non-native species
through creating favorable conditions needed by native plants,

through reinstating natural disturbances (e.g. reintroducing
fire) or through activities of implementing treatments
(e.g. reconfiguring soil surfaces) is an issue in restoration gen-
erally (Larkin et al. 2006). In deserts specifically, the funda-
mental need to restore fertile islands critical to functioning of
natural desert ecosystems can inadvertently enhance habitat
for non-native plants as well (Abella et al. 2012; Abella &
Chiquoine 2019). In our experiment, although all outplants
died, the activities of outplanting increased total non-native
annual cover at one site but not at the other three sites. The
increase, which occurred at the moderately gravelly sand site
which had the highest cover of non-native annuals, resulted
from Sahara mustard. This forb produces copious seed and
can dominate soil seed banks particularly on disturbed, sandy
sites (Abella et al. 2013). Apparently where Sahara mustard
was already abundant on or near the site, the activity of out-
planting native species or perhaps the few irrigations of out-
plants somehow promoted this invasive, while implementing
the abiotic treatments did not. With lower cover than Sahara
mustard but with more consistent presence among sites, non-
native annual grass cover (all Schismus spp.) increased in quadrats
receiving microtopography and tended to increase with vertical
mulch addition. It is possible that the microtopographic structures
trapped seeds or triggered germination of soil seed banks
(Chambers 2000; Biederman &Whisenant 2011), disproportion-
ately benefitting the non-native grasses which can dominate seed
banks (Schneider & Allen 2012).

Lack of Treatment Effects on Species Composition

While abiotic treatments affected some univariate vegetation
variables, multivariate plant community composition showed
minimal variation with respect to treatments. There could be
several reasons for the lack of variation. While native annuals
comprised most of the species present, a disproportionately
large amount of the total annual plant cover was concentrated
in two of the three non-native taxa. This may have served to both
homogenize overall species composition and to competitively
limit differentiation of native annual composition among treat-
ments. Non-native annuals can competitively exclude native
annuals at microsite scales, and this effect may be most pro-
nounced in the most favorable microsites, such as fertile islands
(Brooks 2000). It is possible that the competitive, homogenous
mixture of non-natives limited colonization of treatments by
native annuals. However, it is also possible that dynamic niche
partitioning in native annual communities limited the develop-
ment of consistent compositional variation among treatments,
at least within the first three growing seasons. As an example
of this possible effect, spatial distributions of native annual spe-
cies with respect to fertile islands or interspaces can vary among
years, limiting consistent distributions among microsites
(Berg & Steinberger 2012). Another possibility at our study
sites is that given the homogenizing effect of severe disturbance
creating nearly uniformly de-vegetated sites, the present species
composition among treatment quadrats remained relatively
uniform or random (both of which would limit compositional
difference among treatments) because seeds of many native
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annuals disperse only short distances. In the Sonoran Desert,
Venable et al. (2008), for example, found that most seeds of
the native annual curvenut combseed (P. recurvata) dispersed
less than 2 m.

Interchangeability of Biotic and Abiotic Treatments

A longstanding question in restoration ecology generally and in
desert restoration specifically is how well abiotic structures
serve as functional substitutes for foundational live organisms,
such as trees in forests or fertile island-forming perennials in
deserts (Larkin et al. 2006). Research is beginning to address
this question in deserts, and results thus far are mixed. For exam-
ple, in the Chihuahuan Desert over 10 years, soil developing
beneath artificial, plastic shrubs exhibited similar texture (likely
by trapping fine particles) but did not accumulate carbon or
nitrogen like natural shrubs did (Li et al. 2017). In the Arabian
Desert, more plant species grew below the canopies of dead
perennials than below the canopies of live perennials
(El-Keblawy et al. 2016). Similarly, in the Sonoran Desert,
Peters et al. (2008) found that nurse rocks were more important
than live nurse plants for cactus recruitment. Contrasting with
these findings of greater plant recruitment associated with abi-
otic objects, live 9-year-old outplants in the Mojave Desert sup-
ported more native annual species than did interspaces, whereas
vertical mulch did not (Abella & Chiquoine 2019). The relative
functional benefits of biotic versus abiotic structures are likely to
hinge on differences stemming from numerous processes, such
as trapping of windblown soil, precipitation throughfall and
shading, litter deposition, faunal activity, and belowground
processes (Li et al. 2017). Further assessment of these pro-
cesses and the functional benefits of biotic and abiotic struc-
tures may help advance fundamental questions concerning
community assembly, fertile island ecology, and the degree
to which substitution of abiotic for biotic restoration treatments
or bet hedging using both can improve restoration outcomes in
variable environments.
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